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Abstract— In recent years, imitation learning from large-scale
human demonstrations has emerged as a promising paradigm for
training robot policies. However, the burden of collecting large
quantities of human demonstrations is significant in terms of
collection time and the need for access to expert operators. We
introduce a new data collection paradigm, RoboCrowd, which
distributes the workload by utilizing crowdsourcing principles and
incentive design. RoboCrowd helps enable scalable data collection
and facilitates more efficient learning of robot policies. We build
RoboCrowd on top of ALOHA [1]—a bimanual platform that
supports data collection via puppeteering—to explore the design
space for crowdsourcing in-person demonstrations in a public
environment. We propose three classes of incentive mechanisms
to appeal to users’ varying sources of motivation for interacting
with the system: material rewards, intrinsic interest, and social
comparison. We instantiate these incentives through tasks that
include physical rewards, engaging or challenging manipulations,
as well as gamification elements such as a leaderboard. We conduct
a large-scale, two-week field experiment in which the platform is
situated in a university café. We observe significant engagement
with the system—over 200 individuals independently volunteered to
provide a total of over 800 interaction episodes. Our findings validate
the proposed incentives as mechanisms for shaping users’ data
quantity and quality. Further, we demonstrate that the crowdsourced
data can serve as useful pre-training data for policies fine-tuned on
expert demonstrations—boosting performance up to 20% compared
to when this data is not available. These results suggest the potential
for RoboCrowd to reduce the burden of robot data collection
by carefully implementing crowdsourcing and incentive design
principles. Videos are available at https://robocrowd.github.io.

I. INTRODUCTION

With the success of pre-training large models on massive
Internet-scale datasets in fields such as natural language pro-
cessing and computer vision, imitation learning (IL) has become
a popular paradigm for training robot policies [1]–[5]. However,
modern IL algorithms continue to have significant data require-
ments especially as tasks increase in number and variety—on the
order of hundreds to thousands of demonstrations. For example,
OpenVLA [5] was trained on 970K trajectories from the Open-X
Embodiment dataset [6], much of which was collected by expert
human operators over the course of thousands of hours. This
underscores the need for scalable methods of collecting robot data.

Prior efforts to scale up real-world data collection range
from leveraging videos of human activity [7], [8] to pooling
demonstration data across different institutions [6], [9], [10].
While the former approach—tapping into internet scale videos—
can provide useful visual representations [11]–[13], such methods
often struggle in tasks beyond pick-and-place without substantial
real robot data. On the other hand, pooling datasets across
many tasks and embodiments [4], [6] has amortized the cost of
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Fig. 1: Example of incentivizing demonstrations in RoboCrowd. The principal
P consists of a robot teleoperation setup, a designer, and a scene they have designed.
The scene contains tasks that an agent I (a crowd user) can attempt, guided by
incentives put in place by the designer. For example, a material reward—e.g., a
candy in a bin—can motivate I to produce a successful trajectory for a bin-picking
task, which the designer can add to a dataset.

real-robot data collection to a degree, but expert operators are still
required to collect data especially when new embodiments or tasks
are added. Other works focus on how to reduce the time burden
on data collectors or guide the collection strategy [14]–[16],
but these methods do not address the fundamental problem
that demonstrations are still solely collected by researchers
or designated operators for the express purpose of training
robot policies. This aspect of robot data collection drastically
differs from other modalities such as text or images, where large
volumes of data are organically produced by people in their daily
activities and are readily available on the web. To explore ways
to scale up robot data collection, we ask: Who can effectively
collect robot data, and how might they be incentivized to do so?

To tackle this problem, we look to a large body of work outside
of robotics which studies strategies for incentivizing people in
crowdsourced data labeling tasks [17]–[22]. The goal of these
works is to align the incentives of crowdworkers with researchers’
goals of labeling a given dataset—for example, gamifying the
data labeling process [19] and aggregating data by tapping into
the “wisdom of the crowd.” Our key idea is to build a system that
leverages similar ideas for robot data collection—i.e., aligning
human incentives to provide robot demonstration data. However,
prior strategies in human-computer interaction are designed for
applications that work well with web interfaces, and applying
them to robotics introduces several challenges. First, robot
teleoperation traditionally requires access to physical hardware
which is not readily available to crowdworkers. Second, the robot
platform must be capable of performing complex tasks—in order
to be engaging to users, as well as to collect useful data. At the
same time, the system must be intuitive to onboard, since the vast
majority of potential data providers have no teleoperation experi-
ence. Further, the system must be safe for novice users to operate.

To address these challenges, we propose RoboCrowd, a frame-
work for incentive design in the context of crowdsourced robot
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data collection. Our framework centers five key properties: public
accessibility, capability, intuitiveness, safety, and gamification.
Diving deeper into the incentive design problem, we incorporate
three classes of incentives to appeal to users’ varying sources of
motivation for interacting with the system. These include material
rewards (i.e., physical rewards from tasks), intrinsic interest (i.e.,
motivation from engaging tasks), and social comparison (i.e.,
comparison to other users). To instantiate the framework, we build
upon ALOHA [1]—a bimanual platform for robot teleoperation—
to satisfy our need for capable hardware, and situate the
system in a public space to enable access to general users. We
design hardware enhancements and a user interface to make
teleoperation intuitive and safe for non-experts. Fig. 1 illustrates
an example of how incentives might shape user interactions with
the system into useful data: a scene contains a bin of candies, and
when a user successfully acquires a candy via teleoperation, they
simultaneously contribute a trajectory to a bin-picking dataset.

We deploy the system in a field experiment in which the robot
is situated near a university café, where users participate in a
self-guided, gamified data collection experience. We observe
significant engagement with the system—over 200 individuals
independently volunteered to provide a total of over 800
interaction episodes. We compile the crowdsourced interactions
into a dataset and annotate each trajectory with quality scores and
task labels. We additionally validate material rewards, intrinsic
interest, and social comparison as incentive types for shaping
user interactions with the robot—observing up to 2× the amount
of data collection time spent on tasks that have preferred physical
rewards (when controlling for task type) and up to 4× the amount
of data collection time spent on tasks that are more engaging
(when controlling for physical reward). We additionally observe
a positive correlation between users’ response to a leaderboard
(social comparison mechanism) and their data quality and
quantity. Finally, we analyze the usefulness of the crowdsourced
data for training policies. We demonstrate that the crowdsourced
data can serve as useful pre-training data when fine-tuning on
expert demonstrations, boosting policy performance up to 20%
compared to expert-only policies. To our knowledge, RoboCrowd
is the first system to crowdsource in-person demonstrations for
imitation learning directly from a public audience—with the
potential to enable a new avenue for scalable robot data collection.

II. RELATED WORK

In this section, we provide an overview of prior work in crowd-
sourcing data collection and labeling in robotics and other fields.
Crowdsourcing Non-robot Data. Crowdsourcing is a well-
studied technique in human-computer interaction, often used for
collecting data labels from a large set of users, with a variety of
applications from computer vision to natural language process-
ing [22]–[31]. While many works utilize platforms such as Ama-
zon Mechanical Turk [32] and Prolific [33] to pay crowdworkers
for data labels, other works consider how to incentivize crowd-
workers via other incentives beyond direct payment to gather data
[20], [34]–[37]. For example, Games-with-a-Purpose (GWAPs)
[19] utilize gamification—the use of game-like elements in non-
game contexts [38]—to guide users to give higher quality data la-
bels. In [19], two players try to agree on words to describe pictures

without otherwise communicating—resulting in quality image
label data. Our work aims to investigate how incentive design can
be adapted and applied to robot data collection—specifically, in
the form of demonstrations collected via teleoperation.
Distributing Robot Data Collection. Crowdsourcing has been
an attractive approach for collecting data in robotics in recent
years. Prior works have attempted to crowdsource robot data
via remote teleoperation in simulation or via web interfaces.
RoboTurk [39], [40] develops a smartphone interface to allow
crowdworkers on Mechanical Turk to collect demonstrations
remotely, and shows the potential of using crowdsourced data
to aid policy learning. Although this method alleviates the need
for crowdworkers to physically interact with robot hardware,
the ability to perform precise tasks can be limited (due to
issues such as lack of depth perception, occlusion, etc.). It also
presents challenges in recovering from failure states in real-world
scenarios. Other works have utilized crowdsourcing to guide
exploration in real-world reinforcement learning [41], [42] or to
collect interaction data through high-level abstractions [43]–[45],
but are again limited in the range of tasks that can be collected
because they do not focus on low-level trajectory demonstrations.

Several works have developed new interfaces to make robot
demonstration collection more distributed. Recent works [46]–
[48] design new hardware interfaces—e.g., sensorized hand-held
grippers or portable motion capture systems—to allow for demon-
stration collection in the real-world without needing access to a
physical robot. However, crowdsourcing data with these interfaces
is not immediately possible since it still requires data collectors to
have access to this custom hardware. [49] presents an augmented
reality tablet interface to collect robot data from everyday users,
though it does not immediately extend to bimanual or dynamic
tasks. In this work, rather than introducing a new teleoperation
interface, we leverage an existing interface (puppeteering via
ALOHA [1], which enables precise bimanual manipulation at a
low-cost) and choose to situate it directly in a public space to make
it accessible to data collectors. To make scaling up data collection
possible, we design the system so it can be used by non-experts.

III. PRELIMINARIES

In this section, we provide an overview of the problem of
designing incentives for crowdsourcing data collection and the
problem of imitation learning from collected demonstrations.
Crowdsourcing via Incentive Design. Crowdsourcing systems
can be modeled as repeated principal-agent interactions. We adapt
the notation from [50]. A principal P desires a pool of tasksT to be
completed by an agent (or set of agents) I with maximum quality
at minimum cost. P and I each have utility functions, denoted
as JP :AI×AP→R and JI :AI×AP→R, where AI and AP are the
action spaces of the agent and principal respectively. An incentive
γ : AI → AP maps between agent actions and principal actions.
P aims to design γ to shape I’s actions in a way that maximizes
JP, noting that for any given γ, agents have utility JI(aI,γ(aI)).

In the context of crowdsourcing robot data, P abstractly repre-
sents the data collection platform and its designer, and I represents
a user in the presence of the platform. For the principal P, AP
encapsulates all actions that the robot can take and how the scene
changes in response to robot actions. JP corresponds to how useful



the data collected by I is to P towards constructing a crowdsourced
dataset D—considering how much data is collected, of what
behaviors, and of what quality. In this work, we quantify these
notions in several ways (number of demonstrations, length of
demonstrations, human-labeled quality scores, and downstream
policy learning performance). For the agent I, AI defines I’s
possible actions, such as the task choice and teleoperation actions.
JI is the utility derived by the agent from intrinsic and extrinsic
factors when interacting with the robot. JI is multifaceted and can
vary widely for each I. In this work, we explore different facets of
utility, such as the utility derived from receiving a physical reward
as an outcome for completing a task, intrinsic interest in the task
itself, and motivation driven by social comparison.

An incentive γ is a mapping from AI to AP. This mapping
is induced by a set of decisions that P makes in developing the
robot’s scene context, such as the tasks available. To illustrate,
consider a scene context consisting of a robot and a bin of
physical rewards (e.g., candies), as in Fig. 1. In response to
an agent action aI (e.g., teleoperating the robot to handover a
reward), the principal takes an action aP (the robot moving as
directed) which results in the agent receiving the reward. The
reward is factored into the agent’s utility JI(aI,γ(aI)).

When the existence of an incentive γ affects I’s actions such
that both JI and JP increase, the incentive is aligned between P and
I. For example, if I prefers to receive a candy, and teleoperates the
robot in order to acquire a candy, JI increases by the value of one
candy and JP increases in that there is one more trajectory to in-
clude in the crowdsourced datasetD. We instantiate incentives of
different classes, and illustrate that they are effective mechanisms
for shaping the quality and quantity of behaviors inD. We next de-
scribe how policies can be learned fromD via imitation learning.
Imitation Learning. Imitation learning (IL) aims to learn a
policy πθ parameterized by θ from a dataset D composed of
expert demonstrations. Each demonstration ξ ∈D is a sequence
of observation-action transitions {(o0,a0), ... , (oT ,aT )}. Most
commonly, IL is instantiated as behavior cloning, which trains
πθ to minimize the negative log-likelihood of data, L(θ) =
−E(o,a)∼D[logπθ (a|o)]. Since human-collected demonstrations
may be diverse in practice, algorithms such as Action
Chunking with Transformers (ACT) [1] are designed to model
different modes of behavior. We provide an overview of ACT in
Appendix VII. The success of this training paradigm hinges on the
quality and quantity of trajectories inD. We frame the creation
ofD through the lens of crowdsourcing and incentive design.

IV. ROBOCROWD

In this work, we apply incentive design to the collection of
robot demonstrations for imitation learning, and develop a system
to collect robot demonstrations directly from the public. We
propose three different incentive mechanisms to appeal to users’
varying utility functions, and illustrate that incentives can impact
the quantity and quality of data collected. Finally, we demonstrate
the usefulness of the data for policy learning.
Enabling In-Person Crowdsourced Teleoperation. While a
sizeable body of work has studied crowdsourcing and incentive
design in the context of data labeling, applying these ideas to
robot demonstration collection introduces numerous challenges.

First, members of the public lack direct access to robots. Addi-
tionally, implementing incentives appropriate for real-world robot
demonstrations—e.g., physical rewards and intrinsically interest-
ing tasks—requires hardware that is capable of versatile tasks.
Finally, the vast majority of potential users lack experience teleop-
erating robots, so the system must be easy and safe for users to use.
Given these challenges, we establish a set of desired properties for
our system to enable crowdsourcing robot data in the real world.
P1 Publicly Accessible. The system should be open to members

of the public, including non-roboticists.
P2 Capable. The hardware should be capable of performing

complex manipulation skills.
P3 Intuitive. The system should be intuitive to novice users with

a self-guided onboarding process.
P4 Safe. The system should be safe for novice users to operate.

Designing Incentive Mechanisms. Given a system that
crowdworkers can interact with, we design incentive mechanisms
to shape these interactions into useful data. We expect that
crowdworkers may vary in their utility functions JI. Some may
be motivated by extrinsic rewards for trying out the system;
others may be intrinsically interested in challenging themselves
with certain tasks. Still others—e.g., people who are more
competitive—may be motivated by social comparison [51]. We
therefore design for three incentive mechanisms:
M1 Material Rewards. Designing a scene with material rewards

means that for some agent actions aI, P performs actions
γ(aI) ∈ AP such that I receives a physical object. For
example, I teleoperating a bin-picking task results in P
performing an action which delivers the reward to I.

M2 Intrinsic Interest. Designing a scene for intrinsic interest
expands AP to include engaging or challenging tasks. For
example, as the result of certain agent teleoperation actions
aI, P may perform fine-grained object manipulation γ(aI).

M3 Social Comparison. Designing a scene to enable social
comparison involves a mechanism along which agents
can compare themselves. For example, the action aI of
teleoperating a successful trajectory can result in a principal
action γ(aI) which awards the agent points and increases
their position on a leaderboard.

P1-4 are prerequisites to crowdsourcing; our approach to effec-
tively implementing M1-3 involves an additional characteristic:
P5 Gamified. The system should permit gamified elements—

e.g., the ability to track individual users and the ability to
provide physical rewards.

The rest of this section explains how we meet these desiderata
through our hardware and software design.

A. Hardware Design

We select ALOHA [1], a system for bimanual teleoperation,
as the base platform for our system. ALOHA consists of two
“follower” arms (ViperX) that are controlled via puppeteering with
two “leader” arms (WidowX). We choose to use the ALOHA
platform due to its low-cost, repairability, as well as its ability
for collecting data for a wide task range. Fig. 2 illustrates a set
of enhancements to outfit ALOHA for public use to achieve our
desired properties and enable crowdsourcing. First, we implement



Fig. 2: System Overview. (Left) RoboCrowd uses the ALOHA robot [1], a bimanual teleoperation platform wherein users control 2 ViperX follower arms by
puppeteering via 2 WidowX leader arms. Users can perform tasks in scenes put in place by the scene designer; tasks may include physical rewards that the user can bring
to the End Zone and access via the Handover Region. (Right) Users are guided by a GUI on a tablet. Functionalities include an Interactive Tutorial to get acquainted
with RoboCrowd, a Task Page to select among tasks, and a Leaderboard where users can compare their scores. For additional details, please see Appendix V.

mechanisms for user and robot safety (P4): (a) collision avoidance
to prevent self-collisions, achieved via a parallel MuJoCo [52]
simulator, as well as a visual-audial alarm when the robot is
near collision; (b) plexiglass and vinyl film to cover all sides of
the ALOHA workcell to enclose the puppet arms; (c) extended
extrusion bars on the leader arms to increase the distance between
users and leader arms; (d) mounting of scene props (such as bins
and dispensers) to mitigate scene damage; and (e) a remote obser-
vation camera for the scene designer to periodically monitor the
scene. We also include enhancements to increase the intuitiveness
of the platform for members of the public (P3): (a) a tablet inter-
face, described in the next section; (b) a mechanical stop for users
to automatically terminate episodes by resting the puppet arms.
To enable a gamified setup (P5), we utilize (a) an ID card reader
to authenticate and track users and (b) demarcate an “End Zone”
within scenes, where a user a can place physical rewards and
access them via a handover region at the bottom of the plexiglass
casing. Given its ability to perform versatile tasks, ALOHA sat-
isfies our capability goal (P2). We physically situate it in a public
environment (Section V) to make it accessible to crowd users (P1).

B. Software Design

To make operating the robot intuitive (P2) for members of
the public, we implement a tablet application to complement the
hardware platform and guide users through the operation process
(Fig. 2; right). The interface additionally features a variety of
elements of gamification (P5) that we highlight below.
Onboarding. We develop an onboarding process for new users
to sign-in and receive a tutorial to familiarize themselves with the
platform. In pilot studies (Appendix VI) where users were asked
to use the system but were not given further verbal instructions
(to mimic organic encounters that crowd users might have), users
reported a desire for “instant gratification” and wished to begin to
use the robot as soon as possible rather than watching a video or
reading instructions. Thus, we design our onboarding process to
be efficient and interactive: users begin by tapping their university
ID card on a card reader, which directs them to a Sign In page
to create a user profile. Users are then directed to complete a

Fig. 3: Scene Setup. Illustration of BinScene, Bin+DispenserScene, and
Bin+ZiplocScene, and the objects relevant to our 6 tasks (hi-chew, tootsie-
roll, hershey-kiss, jelly-bean, hi-chew-bin, hi-chew-ziploc).

consent form and an interactive tutorial to learn how to puppeteer
the robot (Fig. 2; right). The tutorial contains four steps and takes
less than one minute to complete. We detail the stages of the
interactive tutorial in Appendix V.
Performing Tasks. After completing the tutorial, users can
choose to enter a Task Page where they see videos of different
tasks they can complete in the scene (Fig. 2; right). These tasks
can be presented in various ways; for example, marked with levels
of difficulty (e.g., easy versus hard). In service of P5, we use
gamified verbiage and elements throughout the interface (e.g. a
Start Playing button, and a countdown timer on performing tasks).
Specifically for M3, we implement a point system where users
receive points for completing tasks, which are tallied and visible
on a Leaderboard Page, where users can see how their scores
rank compared to other users (Fig. 2; right). We describe imple-
mentation details of the software architecture in Appendix V.

V. EXPERIMENTAL SETUP

We utilize RoboCrowd to collect a crowdsourced dataset over
a two-week period in a public university café. We instantiate
three types of incentive mechanisms (M1-M3) to appeal to users’
varying utility functions JI, and design scenes in order to verify if
these mechanisms can shape demonstration quantity and quality.
This section details our experimental setup. We then analyze the
data and discuss the results in Section VI.
Scene Design. On each day of crowdsourcing, two of six tasks are
made available to users, with different pairs corresponding to dif-
ferent scenes (Fig. 3). BinScene contains bins with two types of



candies for single arm bin-picking tasks (hi-chew and tootsie-
roll). Bin+DispenserScene contains the same bins with a
single type of candy (hershey-kiss), as well as a cup dispenser
and a jelly bean dispenser (jelly-bean). Bin+ZiplocScene
contains the same bins with a single candy type (hi-chew-bin)
as well as a closed Ziploc bag full of candies (hi-chew-ziploc).
Incentive Types. We select tasks to study 3 classes of incentives.

[M1] Material Rewards. We hypothesize that direct material
rewards can influence which tasks users perform with the system.
We design a simple scene context to test this (BinScene). There
are two bins on the table, one containing Hi-Chews and the other
containing Tootsie Rolls (Fig. 3). There are two bin-picking
tasks available to the user on the Task Page: “pick up Hi-Chew”
(hi-chew) and “pick up Tootsie Roll” (tootsie-roll). We
hypothesize that users who engage with the robot will more often
choose to interact with the Hi-Chew (which, in an offline survey,
we find is more desired than the Tootsie Roll; see Appendix III).
This incentive mechanism is an example of extrinsic motivation.

[M2] Intrinsic Interest. Users may also be intrinsically
motivated in how they choose to interact with the system. We
hypothesize that users prefer to spend time on tasks that are
more qualitatively interesting and challenging. Therefore, we
design Bin+ZiplocScene to contain a bin with Hi-Chews as
well as a closed Ziploc bag with Hi-Chews inside. This scene
features two available tasks: “pick up Hi-Chew from bin” and
“open Ziploc, pick up Hi-Chew, close Ziploc.” With the same
extrinsic reward, the latter task is significantly more challenging,
yet may be more intrinsically interesting to users. We test this
effect in Bin+DispenserScene as well, which contains a bin
with Hershey Kisses as well as a cup dispenser and a dispenser
containing Jelly Beans. The tasks available to the user in this
scene are “pick up Hershey Kiss from bin” (hershey-kiss)
and “take cup from dispenser and eject Jelly Bean into the
cup” (jelly-bean). The latter task is again significantly more
challenging; but note that it does not provide greater extrinsic
reward according to our offline survey (see Appendix III).

[M3] Social Comparison. Users may vary in how they
respond to gamification mechanisms for social comparison in
the interface. To test the idea that gamified elements can shape
the way certain users collect data, we include a leaderboard that
tallies the number of “points” users achieve by completing tasks
(Fig. 2). Using quantitative measurements to compare players,
including via leaderboards, is a common method for provoking
competition [53]. We hypothesize that users who choose to look
at the leaderboard may give a higher quantity of data, stemming
from social comparison as an incentive mechanism.
Data Annotation Pipeline. User interaction data are a mixture of
task-relevant data, tutorial interactions, and “play” data. We man-
ually annotate all interactions by whether the user was engaging
in free play or task-relevant behavior, as well as quality scores on
a scale of 0 (play data) to 3 (highest quality task data). We define
these quality labels based on how smooth the user’s motions are,
whether there is retrying behavior or extraneous movements, etc.
Importantly, each interaction episode may include data relevant to
different tasks and of various qualities, so we annotate with these
labels at every transition per trajectory. For more details on the
annotation pipeline and quality labels, please see Appendix V.

Fig. 4: Dataset composition by number of time steps for each of our three
scenes. Different hues indicate different tasks. Tasks receive quality scores from 1
to 3 (higher is better) which are also indicated by brighter shades. Tutorial data
receives a score of 1 or 2. Play data always receives a score of 0.

Metrics. We analyze the crowdsourced data using several metrics:
• Quantity. Our primary metric measures the number of

timesteps a user spends performing a task.
• Quality. We utilize our data quality annotations, and addition-

ally explore other data quality measures in Appendix III.
• Usefulness for Policy Learning. We study the utility of the

crowdsourced data for policy learning via co-training and
fine-tuning with expert demonstrations.

• Self-reported Likert Ratings. We survey users for self-ratings of
intuitiveness, enjoyment, and how well the robot completed the
task in the way they desired, and report results in Appendix III.

VI. RESULTS

In this section, we analyze the composition of the dataset, the
effects of different incentive mechanisms, and the usefulness of
the data for policy learning.

A. Usage Overview and Dataset Composition

We observe significant engagement with RoboCrowd over the
two-week collection period: there were N= 231 unique users in
total. On most days, more than two-thirds of these were new users
that had not used the system on prior days. There were a total
of 817 interaction episodes distributed throughout the period.

Our dataset is composed of 3 scenes (Fig. 3). We collect
129 interaction episodes in BinScene (B; Day 1), 381
in Bin+DispenserScene (B+D; Days 2–5), and 307 in
Bin+ZiplocScene (B+Z; Days 6–11). In aggregate, users spent
54.2% of interaction time performing the preset tasks in the
scene, 9.6% on the interactive tutorial, and 36.1% on free-play.
While we focus our learning experiments on task-relevant data
in Section VI-C, this play data could be fruitful for training
multitask policies in the future. In Fig. 4, we show the distribution
of tasks and qualities over timesteps for each scene. Qualities are
determined on a scale from 1–3 for task-relevant data and a scale
of 1–2 for tutorial data based on the smoothness of the user’s
motion and whether there is retrying behavior or extraneous
movements. We detail the quality annotation rules in Appendix V,
and illustrate sample trajectories in each scene in Appendix I.

B. Effects of Incentives on Data Quantity and Quantity

Material Rewards. While BinScene contains two bin-picking
tasks with nearly identical difficulty, users in aggregate spend 2×
as many timesteps performing hi-chew compared to tootsie-
roll. This suggests that users devote more interaction time to
tasks where the direct material incentive is more preferred. We
also find that users spend a significant amount of time (50.7%)
in free-play with the system in BinScene, engaging in behaviors
such as trying out more challenging tasks (e.g., attempting to



Task Scene # Exp. Expert Co-train Fine-tune

hi-chew B 30 37.5% 27.5% 42.5%
tootsie-roll B 30 42.5% 25% 40%
hershey-kiss B+D 60 20% 32.5% 35%
hi-chew-bin B+D 80 20% 12.5% 40%
jelly-bean B+Z 100 48.9 ± 18.6 8.9 ± 10.1 19.7 ± 29.7

hi-chew-ziploc B+Z 100 5.4 ± 12.2 17.1 ± 15.8 22.1 ± 14.3

TABLE I: Policy Performance. Performance of policies trained on expert demon-
strations (# Exp.), co-trained on crowd data, and pre-trained on expert+crowd
data then fine-tuned on expert data. We conduct 40 trials for each cell. For the
long-horizon tasks (jelly-bean, hi-chew-ziploc), we provide a normalized
return (out of 100) rather than success rate (see Appendix IV for details).

unwrap the candies; see Appendix II). Thus, while material incen-
tives can influence user demonstrations (e.g., higher material in-
centives can lead to more data), drivers of intrinsic motivation such
as the difficulty of the task also play a role, as we discuss next.

Intrinsic Motivation. Interestingly, in Bin+DispenserScene,
which contains a harder bin-picking task than in Scene
A (hershey-kiss) and a challenging long-horizon candy
dispensing task (jelly-bean), users spend only 35.3% of
the time in free-play. Additionally, despite the fact that users
do not generally prefer Jelly Beans over Hershey Kisses as a
material reward, they still spend more (1.5×) time performing
the jelly-bean task. This suggests that intrinsic interest can
influence users to allocate more time doing harder task compared
to easier ones, or engaging in free-play. To probe whether this
intrinsic motivation effect is present even when controlling for
the material reward, we consider Bin+ZiplocScene. Here, the
incentive is contained within a closed Ziploc bag which must be
opened. The same incentive is available in the bin to be picked.
Users spend 4.18× as many timesteps on hi-chew-ziploc
compared to hi-chew-bin, again suggesting that intrinsic
motivation influences which tasks users perform in the scene.

No Yes
Visited Leaderboard

0
5

10
15
20

Quantity

No Yes
Visited Leaderboard

0

1

2

3
Quality

Fig. 5: Quantity and quality by leader-
board use. Violin plot showing the
distribution of quantity and quality of
demonstrations for users who did and
did not visit the leaderboard.

Social Comparison. To ex-
amine how different peo-
ple respond differently to
explicit comparison mech-
anisms in the system, we
record which users visit the
Leaderboard Page, and con-
duct a Mann-Whitney U-test
to compare the quantity and
quality of demonstrations provided by Leaderboard visitors
compared to other users. Fig. 5 illustrates the distribution of
quality (number of interactions) and quality (mean quality score)
conditioned on Leaderboard visitation. We find that that visitors
of the Leaderboard provide significantly more demonstrations
(p<0.001) that are higher quality on average (p<0.05).

C. Policy Learning with the Crowdsourced Data

In this section, we study how useful the crowdsourced data is
for downstream policy learning. To complement the crowdsourced
data, we collect a set of high-quality expert demonstrations for
each task: 30 demonstrations for each of hi-chew and tootsie-
roll, 60 for hershey-kiss, 80 for hi-chew-bin, and 100 for
each of jelly-bean and hi-chew-ziploc.

In Table I, we compare different methods of mixing
crowdsourced data and expert data on our six tasks. All policies

use ACT [1] with default hyperparameters. Training exclusively
with the expert data on each task constitutes the Expert setting.
Co-train refers to naı̈vely mixing data from a crowdsourced
task (i.e., task-relevant data of any quality) with the expert
data. We also compare to Fine-tune, which trains in two stages:
first co-training on the crowd data and expert data and then
fine-tuning on expert data only; for fair comparison, note that
Fine-tune is trained for fewer total steps (150K) than both Expert
and Co-train (200K). Crowdsourced data provides performance
improvements in multiple cases, but the specific effects vary
by task. For example, crowdsourced data for the bin-picking
tasks can involve low-quality behaviors (i.e., regrasping behavior
or grasping multiple items at a time), which may cause the
Co-train to perform worse than Expert, but still provide a useful
initialization for Fine-tune. We provide additional qualitative
analysis of the trained policies in Appendix B.

Subtask Expert Fine-tune

Grasp Corner 85% 95%
Pinch Tab 70% 85%
Slide Open 60% 80%

TABLE II: Staged success rate for a
policy pre-trained on hi-chew-ziploc
crowd data and fine-tuned on 50 expert
demos of tool-ziploc compared to
expert-only tool-ziploc policy.

We also demonstrate that
the crowdsourced data can
benefit downstream tasks.
In Table II, we train an
expert-only ACT policy (50
demos) to convergence on
a new task, tool-ziploc,
which requires unzipping a
Ziploc containing tools. The
unzipping skill is shared with hi-chew-ziploc. We compare this
expert-only policy to a policy trained with two stages (pre-training
on crowdsourced hi-chew-ziploc data and then fine-tuning on
the expert tool-ziploc data). This outperforms the expert-only
policy by 20%, suggesting that crowdsourced data can be
beneficial in downstream tasks with shared manipulation skills.

VII. DISCUSSION AND LIMITATIONS

In this work, we propose a new paradigm for robot data
collection via crowdsourcing and incentive design. We focus
on three incentive types—material rewards, intrinsic motivation,
and social comparison—but there are further avenues to explore
within these categories as well (e.g., how physical rewards differ
from monetary incentives). Crafting data collection schemes
where people are motivated by external rewards, fun, interest,
or competition is a general principle, and a rich area for future
work would be to scale up our findings on incentive design in
robot data collection to new tasks. For example, appealing to
extrinsic motivation and social comparison could help craft a data
collection scheme for a task such as packing groceries—where
users are motivated by spaced rewards (getting to keep every
N bags) or social comparison (getting points for more efficient
packing). A variety of other incentive types (e.g., task novelty,
collective effort, robot’s ability to learn from the data, etc.) could
be applied to new settings as well. While crowdsourcing has the
benefit of reducing data collection effort of individual researchers,
it also presents challenges of data quality and heterogeneity. We
hope that our dataset—collected from over 200 users with manual
fine-grained quality annotations—can be helpful to future works
seeking to understand the style and diversity of different human
operators, and what the most effective ways are to leverage
crowdsourced data during downstream policy learning.
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APPENDIX

OVERVIEW

In the appendices below, we provide additional details on
the implementation of RoboCrowd, our experiments, and our
crowdsourced dataset. We provide a brief overview of each
appendix below.

Appendix I – Task Details

We give descriptions of each of our 6 tasks, as well as
renderings and images depicting sample expert demonstrations
for each task.

Appendix II – Dataset Examples

We provide sample trajectories from our collected dataset
including their task and quality annotations, to qualitatively
illustrate the diversity of the behaviors in the dataset.

Appendix III – Additional Dataset Analysis

We provide further data analysis, including an offline user
study to justify our scene choices, additional data quality
analysis, and results on users’ self-reported Likert ratings of
their interactions with the system.

Appendix IV – Additional Details on Policy Learning Experi-
ments

We provide additional details on the training and evaluation
procedures for our policy learning experiments, as well as
further qualitative analysis of the results.

Appendix V – Additional Details on Software Implementation
and Data Annotation

We provide further details on the graphical user interface, inter-
active tutorial, software implementation, and data annotation
pipeline.

Appendix VI – Additional Details on Pilot Studies and System
Development

We provide more details on how we designed and refined the
system through pilot studies.

Appendix VII – Overview of Action Chunking with Transfomers
(ACT) [1]

We provide additional background on the Action Chunking
with Transfomers (ACT) algorithm.

APPENDIX I
TASK DETAILS

In Tables III to VIII below, we provide a verbal description of
the behavior that the expert demonstrations perform for each task.
We additionally include a virtual rendering of different segments
of a sample demonstration (where the gripper is rendered with
increasing opacity for later timesteps). Additionally, we show a
timelapse of the overhead camera image observation for the same
sample expert demonstration.

APPENDIX II
DATASET EXAMPLES

In Figs. 6 to 8, we give 3 qualitative examples of interaction
episodes in our crowdsourced dataset. We illustrate a timelapse
of each episode with the overhead camera observation. We also

include the task and quality annotations at each timestep, with a
verbal description of the episode in the caption.

APPENDIX III
ADDITIONAL DATASET ANALYSIS

In this section, we provide additional data analysis. In Ap-
pendix A, we describe an offline study over user preferences
for different candies, informing our different scene setups. In
Appendix B and Appendix B.1, we examine additional metrics
(i.e., tutorial quality and Likert ratings) that correlate with quality
of user interaction episodes, and in Appendix C, we provide
additional statistics on usage and retention.

A. Justification for Scene Choices

To justify our scene setup and task pairings, we perform
an offline survey on user preferences for various candies. On
a sample of N = 16 users, we find that 81% prefer a Hi-
Chew to a Tootsie Roll. Thus, BinScene (which includes
the hi-chew and tootsie-roll tasks) allows us investigate
whether this preference for material reward shapes task choice
when teleoperating demonstrations, when the task is otherwise
equivalent besides the material reward. Users exhibit a more mild
preference for a Hershey Kiss compared to a small handful of
Jelly Beans (with 62% of respondents preferring the Hershey
Kiss). Bin+ZiplocScene (which includes the hi-chew-bin
and hi-chew-ziploc tasks) allows us to investigate how
intrinsic motivation and task difficulty affects user behavior
when teleoperating in the case that the material reward (a Hi-
Chew) is held constant between the the simpler task and the more
challenging task. Bin+DispenserScene allows us to investigate
this question when the material rewards are different, and users
do not exhibit an overall preference for the reward from the harder
task (and even mildly prefer the reward from the easier task).

B. Additional Metrics on Demonstration Quality

Our crowdsourced dataset contains rich interaction data per
user ID—-during and after the interactive tutorial period. This
dataset can help to yield insights about which users give higher
quality trajectories, and what factors can help predict this quality.
As an example, we examine how the quality of interactions
after the tutorial (i.e., when the user selects tasks in the scene to
perform) correlates with quality during the tutorial period (i.e.,
when the user is instructed to complete simple onboarding tasks).
Specifically, we examine the distribution of mean quality during
task interactions versus minimum quality during the tutorial
period; the user’s tutorial period is classified as 0 if there is any
off-task behavior, 1 if the tutorial is performed but with retrying,
and 2 if the tutorial is performed smoothly. We observe a loose
positive correlation between higher minimum tutorial quality and
mean task quality; and notably, users who produce consistently
high quality task demonstrations (quality 3) are more present
in the group with high quality tutorials. The tutorial period can
therefore be a first-cut proxy at filtering demonstrators by quality.



Task Name Pick up a Hi-Chew (hi-chew)

Task Description Move the right arm towards the candy bin. Grasp one Hi-Chew. Drop it in
the End Zone. Finally, return to the home position.

Expert Trajectory
Rendering

Steps 0  249 Steps 250  449 Steps 450  504

Expert Trajectory
Timelapse

Step 0 Step 100 Step 200 Step 300 Step 400

Step 500

TABLE III: Description of the hi-chew task, as well as a rendering and timelapse of a sample expert trajectory.

Task Name Pick up a Tootsie Roll (tootsie-roll)

Task Description Move the left arm towards the candy bin. Grasp one Tootsie Roll. Drop it in
the End Zone. Finally, return to the home position.

Expert Trajectory
Rendering

Steps 0  249 Steps 250  499 Steps 500  599

Expert Trajectory
Timelapse

Step 0 Step 100 Step 200 Step 300 Step 400

Step 500

TABLE IV: Description of the tootsie-roll task, as well as a rendering and timelapse of a sample expert trajectory.



Task Name Pick up a Hershey Kiss (hershey-kiss)

Task Description Move the right arm or the left arm towards the candy bin. Grasp one Hershey
Kiss. Drop it in the End Zone. Finally, return to the home position.

Expert Trajectory
Rendering

Steps 0  249 Steps 250  399 Steps 400  453

Expert Trajectory
Timelapse

Step 0 Step 100 Step 200 Step 300 Step 400

TABLE V: Description of the hershey-kiss task, as well as a rendering and timelapse of a sample expert trajectory.

Task Name Eject a Jelly Bean from the Candy Dispenser (jelly-bean)

Task Description

Use the left arm to pull a cup from the cup dispenser. Bring the cup near the
lever of the candy dispenser. Use the right arm to align the cup under the
lever, then press the lever. Then, use the right arm to pick up the cup and
bring it to the End Zone. Finally, return to the home position.

Expert Trajectory
Rendering

Steps 0  249 Steps 250  499 Steps 500  624 Steps 625  874 Steps 875  1049

Steps 1050  1131

Expert Trajectory
Timelapse

Step 0 Step 100 Step 200 Step 300 Step 400

Step 500 Step 600 Step 700 Step 800 Step 900

Step 1000 Step 1100

TABLE VI: Description of the jelly-bean task, as well as a rendering and timelapse of a sample expert trajectory.



Task Name Pick up a Hi-Chew from the Bin (hi-chew-bin)

Task Description Move the right arm or the left arm towards the candy bin. Grasp one Hi-
Chew. Drop it in the End Zone. Finally, return to the home position.

Expert Trajectory
Rendering

Steps 0  249 Steps 250  549 Steps 550  741

Expert Trajectory
Timelapse

Step 0 Step 100 Step 200 Step 300 Step 400

Step 500 Step 600 Step 700

TABLE VII: Description of the hi-chew-bin task, as well as a rendering and timelapse of a sample expert trajectory.

 tootsie-roll (Quality 2) 

Step 0

 tootsie-roll (Quality 2) 

Step 200

 tootsie-roll (Quality 2) 

Step 400

 tootsie-roll (Quality 2) 

Step 600

 play (Quality 0) 

Step 800

 play (Quality 0) 

Step 1000

 play (Quality 0) 

Step 1200

 play (Quality 0) 

Step 1400

 play (Quality 0) 

Step 1600

Fig. 6: In this trajectory, the user begins by performing the tootsie-roll task with moderate quality—i.e., there are about 3 attempts to grasp the candy, and there is
some extraneous movement in the right arm, but the user is otherwise successful at grasping the candy. Before bringing the candy all the way to the End Zone, the user
attempts to unwrap the candy. They then hand it over to the other arm, place it in the End Zone, and then move the arms upward. The first half of the episode is marked
as tootsie-roll (Quality 2) and the latter half of the episode is marked as play (Quality 0).



Task Name Open the Ziploc, Pick up a Hi-Chew, then Close the Ziploc (hi-chew-
ziploc)

Task Description

Use the right arm to bring the Ziploc bag to the center of the table. Then,
use the left arm to hold the Ziploc while pulling the Ziploc tab with the right
arm to open the bag. Then, spread the Ziploc open and pick out a Hi-Chew
with the right arm, and bring it to the End Zone. Then, use the right arm to
hold the Ziploc while pulling the Ziploc tab closed with the left arm. Finally,
use the right arm to place the Ziploc back in the corner of the table, and
return the arms to the home position.

Expert Trajectory
Rendering

Steps 0  99 Steps 100  299 Steps 300  799 Steps 800  1499 Steps 1500  1624

Steps 1625  1999 Steps 2000  2199 Steps 2200  2385

Expert Trajectory
Timelapse

Step 0 Step 100 Step 200 Step 300 Step 400

Step 500 Step 600 Step 700 Step 800 Step 900

Step 1000 Step 1100 Step 1200 Step 1300 Step 1400

Step 1500 Step 1600 Step 1700 Step 1800 Step 1900

Step 2000 Step 2100 Step 2200 Step 2300

TABLE VIII: Description of the hi-chew-ziploc task, as well as a rendering and timelapse of a sample expert trajectory.



 jelly-bean (Quality 2) 

Step 0

 jelly-bean (Quality 2) 

Step 200

 jelly-bean (Quality 2) 

Step 400

 jelly-bean (Quality 2) 

Step 600

 jelly-bean (Quality 2) 

Step 800

 jelly-bean (Quality 2) 

Step 1000

 jelly-bean (Quality 2) 

Step 1200

 jelly-bean (Quality 2) 

Step 1400

 jelly-bean (Quality 2) 

Step 1600

 jelly-bean (Quality 2) 

Step 1800

 jelly-bean (Quality 2) 

Step 2000

 jelly-bean (Quality 2) 

Step 2200

 play (Quality 0) 

Step 2400

 play (Quality 0) 

Step 2600

 play (Quality 0) 

Step 2800

 play (Quality 0) 

Step 3000

 play (Quality 0) 

Step 3200

 play (Quality 0) 

Step 3400

 play (Quality 0) 

Step 3600

Fig. 7: In this trajectory, the user grasps a cup from the cup dispenser and places it under the lever of the candy machine. They are successful in collecting jelly beans in
the cup, though the trajectory includes retrying behavior and is not as smooth as an expert trajectory. The user brings the cup halfway to the End Zone, and then begins
behaviors that are not part of the task—i.e., placing a Hershey Kiss in the cup before bringing it to the End Zone. The first part of the episode is marked as jelly-bean
(Quality 2) and the latter part is marked as play (Quality 0).



 hi-chew-ziploc (Quality 1) 

Step 0

 hi-chew-ziploc (Quality 1) 

Step 200

 hi-chew-ziploc (Quality 1) 

Step 400

 hi-chew-ziploc (Quality 1) 

Step 600

 hi-chew-ziploc (Quality 1) 

Step 800

 hi-chew-ziploc (Quality 1) 

Step 1000

 hi-chew-ziploc (Quality 1) 

Step 1200

 hi-chew-ziploc (Quality 1) 

Step 1400

 hi-chew-ziploc (Quality 1) 

Step 1600

 hi-chew-ziploc (Quality 1) 

Step 1800

 hi-chew-ziploc (Quality 1) 

Step 2000

 hi-chew-ziploc (Quality 1) 

Step 2200

 hi-chew-ziploc (Quality 1) 

Step 2400

 hi-chew-ziploc (Quality 1) 

Step 2600

 hi-chew-ziploc (Quality 1) 

Step 2800

 hi-chew-ziploc (Quality 1) 

Step 3000

 hi-chew-ziploc (Quality 1) 

Step 3200

 hi-chew-ziploc (Quality 1) 

Step 3400

 hi-chew-ziploc (Quality 1) 

Step 3600

 hi-chew-ziploc (Quality 1) 

Step 3800

 hi-chew-ziploc (Quality 1) 

Step 4000

 hi-chew-ziploc (Quality 1) 

Step 4200

 hi-chew-ziploc (Quality 1) 

Step 4400

 hi-chew-ziploc (Quality 1) 

Step 4600

 hi-chew-ziploc (Quality 1) 

Step 4800

 hi-chew-ziploc (Quality 1) 

Step 5000

 hi-chew-ziploc (Quality 1) 

Step 5200

 hi-chew-ziploc (Quality 1) 

Step 5400

 hi-chew-ziploc (Quality 1) 

Step 5600

Fig. 8: In this trajectory, the user correctly moves the Ziploc from the corner of the table to the center of the table, and grasps a Hi-Chew from inside the Ziploc which
they bring to the End Zone. They are unsuccessful in closing the Ziploc before episode termination. The user is task-directed for the whole episode, however takes
longer than better quality trajectories for this task and performs retrying behavior at each subtask. The whole trajectory is marked as hi-chew-ziploc (Quality 1).
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Fig. 9: Distribution of Mean Task Quality versus Minimum Quality during the
Tutorial Period.

1) Self-Reported Likert Metrics: After every interaction
episode, we prompt the user to answer whether they agree with 3
statements, on a 5-point scale (1 - Strongly Disagree; 2 - Disagree;
3 - Neutral; 4 - Agree; 5 - Strongly Agree).
• Intuitive: Controlling the robot was intuitive.
• Interesting: Controlling the robot was fun and interesting.
• Wanted: The robot accomplished the task in the way that I

wanted.
Fig. 10 summarizes the responses to these questions, aggregated
by users’ minimum ratings to each statement over their interaction
episodes. The majority of users agree with all three statements,
and most often have the strongest ratings for Interesting
compared to Intuitive and Wanted. We find also that there are
loose correlations between the manually annotated quality scores
for users’ interaction episodes and users’ self-reported ratings
for each of these metrics. Specifically, users who self-report low
ratings on each of the three metrics have lower mean quality
scores. However, users who self-report high ratings have quality
scores that span low to high.

C. Usage and Retention

We illustrate the usage of the RoboCrowd in Fig. 11. We
observe significant engagement with RoboCrowd over the two-
week collection period: there were N= 231 unique users in total.
On most days, more than two-thirds of these were new users
that had not used the system on prior days. There were a total of
817 interaction episodes distributed throughout the period. The
most common time at which users interacted with the system was
about 1pm, corresponding to the most trafficked time in the café
(lunchtime). We collect 129 interaction episodes in BinScene
(Day 1), 381 in Bin+DispenserScene (Days 2-5), and 307 in
Bin+ZiplocScene (Days 6-11).

APPENDIX IV
ADDITIONAL DETAILS ON POLICY LEARNING EXPERIMENTS

In this section, we give additional details on our policy
learning experiments. Appendix A provides training details and

Learning Rate 1e-5
Batch Size 8
# Encoder Layers 4
# Decoder Layers 7
Feedforward Dimension 3200
Hidden Dimension 512
# Heads 8
Chunk Size 100
KL-weight (β ) 10
Dropout 0.1
Backbone ResNet-18
Image Augmentations RandomCrop, Random-

Resize, RandomRotation,
ColorJitter

TABLE IX: Hyperparameters for ACT, shared for all experiments.

hyperparameters, Appendix B provides details on our evalua-
tion procedure, and Appendix C provides additional qualitative
discussion of our learned policies.

A. Training Details

For the Expert and Co-train experiments, we train policies
for 200K steps for all tasks. For the Fine-tune experiments, we
fine-tune the co-trained model (partially trained for 100K steps)
for an additional 50K steps on expert data only. We use the
implementation of ACT [1] from [54], including the default
hyperparameters from [1], as shown in Table IX.

B. Evaluation Details

We perform policy evaluations for 40 trials each, early stopping
when policies exhibit excessively jittery or unsafe behavior. While
the RoboCrowd training dataset was collected in a café where
lighting varies throughout the day, during evaluation, we move
the setup to a location with a visually similar background but
consistent lighting for controlled evaluations.

For the bin-picking tasks, we define success as the robot arm
picking exactly one of the desired candy and bringing it to the
End Zone. For our challenging, long-horizon tasks (jelly-bean
and hi-chew-ziploc), success is 0% for all policies, so we
instead compare policies via normalized return to measure partial
proficiency at tasks. We describe the process for computing
normalized return below.

Each of the following subtasks in jelly-bean corresponds to
1 point in the episode return: Retrieves Cup from Dispenser;
Places Cup Down; Aligns Cup Under Lever; Presses Lever;
Collects Jelly Beans in Cup; Picks up Cup; Brings Cup to
End Zone. Each of the following subtasks in hi-chew-ziploc
corresponds to 1 point in the episode return: Picks up Bag; Places
Bag in Center of Table; Slides Open; Picks Hi-Chew; Brings Hi-
Chew to End Zone; Closes Bag; Places Bag in Corner of Table.
For these tasks, we report normalized return—the average return
over evaluation trials divided by the maximum return (achieved
by all expert demonstrations).
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Fig. 10: (Top) Histogram of Likert Ratings (aggregated by the user’s minimum response over their interaction episodes) for the Intuitive, Interesting, and Wanted
questions. (Bottom) Distribution of mean quality of interaction episodes for different Likert Ratings for Intuitive, Interesting, and Wanted.
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Fig. 11: Statistics on usage over a two-week period: number of users per day (left), number of interaction episodes per day (middle), and distribution of interaction
episodes by time of day (right).

C. Qualitative Analysis of Learned Policies

We find that in most cases, Co-train and/or Fine-tune improve
upon Expert. However, the specific effects vary by task. For
example, we find that for the hi-chew task, the co-trained
policy performs worse than the expert policy, but the fine-tuned
policy performs better; whereas with the hershey-kiss task,
both the co-trained policy and fine-tuned policy perform better.
We hypothesize that the crowdsourced data is more useful for
hershey-kiss because (a) hershey-kiss is a more complex
task (in that it is more multimodal, i.e., either arm can be used
to pick up a Hershey Kiss, and the grasping required needs to
be more precise to not crush the Hershey Kiss) and (b) a greater
proportion of the hershey-kiss data is of higher quality. We
notice that the crowdsourced data for jelly-bean is especially

diverse, and naı̈vely co-training or fine-tuning underperforms
using the expert data only.

Qualitatively, we observe in several cases that the co-trained
and fine-tune policies exhibit meaningful but suboptimal behav-
iors from the crowdsourced data (e.g., picking up multiple objects
from the bin instead of one). On the other hand, there are also
helpful behaviors from the crowdsourced data (not represented
in the expert data) that benefit trained policies—e.g., regrasping
behavior.

Overall, the RoboCrowd dataset is very diverse, and contains
both task-relevant behaviors (of various levels of quality) and free-
play behavior. Future work on more sophisticated policy learning
methods that leverage these diverse characteristics can help to get
the maximum utility out of crowdsourced demonstration data.



APPENDIX V
ADDITIONAL DETAILS ON SOFTWARE IMPLEMENTATION

AND DATA ANNOTATION

In this section, we provide additional details on our software
interface and implementation, as well as our data annotation
pipeline. Appendix A provides an overview of the application
flow and interface, Appendix B details the interactive tutorial
procedure, Appendix C provides implementation details, and
Appendix D details the data annotation pipeline.

A. Application Flow and User Interface

Fig. 12 gives an overview of the flow through the tablet
application, and Table X provides screenshots of the major
pages referenced in the flowchart. We additionally highlight the
Interactive Tutorial in Fig. 13 and the visual warning for collision
detection in Fig. 14. We now briefly describe the application flow.
To begin a new session, the user taps their ID card on the card
reader, which advances the tablet application to a screen where
the user can enter a nickname (if they are a new user). They are
then directed to the Main Page, where they complete a consent
form and the interactive tutorial. From the Main Page, users can
also press a “Start Playing” button which directs them to the Task
Page, where they can see videos of tasks available in the scene,
and can tap on a task to see more details and begin demonstrating
the task. For safety, the user receives an audial and visual warning
(Fig. 14) if the arms are near-collision. When users are done with
the task (i.e., they click a Stop button on the Task Detail Page or
they rest the grippers on the mechanical stop), they are asked to
mark their demonstration as a success or failure, and fill out a brief
survey. The success/failure markings are used as the basis for the
points which are added to the user’s point total in the Leaderboard,
which is accessible from the Main Page; in our experiments, users
receive 10 points for successful “easy” tasks (bin-picking) and 20
points for successful “difficult” tasks (the remaining tasks). From
the Main Page, users can also choose to provide feedback, or
press a Request Help button which immediately notifies the study
team (e.g., if the user needs assistance or if the setup requires
maintenance).

B. Interactive Tutorial

We provide a zoomed-in version of the pages in the Interactive
Tutorial in Fig. 13. The aim of the tutorial is to guide the user
on how to start and stop interaction episodes as well as how to
puppeteer with ALOHA. Specifically, users are first instructed to
wait until ALOHA’s arms rise to the home position, and then they
are given instructions on how to start puppeteering (by squeezing
both sets of grippers on the leader arms). After they do so, the
tutorial automatically proceeds to the next stage, where users then
are told to gently touch the left and right arms to the table; the
goal is to help users get calibrated to the robot’s range of motion
and degrees of freedom, as well as the types of forces they need
to apply to move the arms. Finally, users are given instructions
on how to stop the interaction episode, by resting the grippers of
the leader arms in the grooves of the mechanical stops. When the
user does so, the puppet arms are automatically lowered, and the
user is presented a brief video on how to navigate the rest of the
interface.

C. Implementation Details

The software application is implemented with React (frontend)
and Flask (backend), and uses WebSocket connections to com-
municate between the user client and backend server. We use
a SocketIO-ROS bridge to pass messages between the backend
server and robot controller. The robot controller operates at 50Hz
and is based on [1]. When the robot is being teleoperated, we run
a parallel simulation in MuJoCo [52] which is updated at every
time step to detect self-collisions.

Sign In Consent

Interactive TutorialMain Page

Leaderboard

Task Page Task Detail Page

Survey

Request Help

Give Feedback

Fig. 12: Flowchart illustration of pages in the user interface.

D. Data Annotation Pipeline

We annotate episodes in our crowdsourced dataset by task and
quality. We implement an interface for annotation, which we
illustrate in Fig. 15. We annotate episodes by dragging a slider
which scrubs through the episode and selecting a task and quality
annotation for different segments of the episode. We describe the
annotation rules below.

• play (Quality 0). All free-play behavior is marked as play
with quality 0. Play data includes undirected movements
and tasks that the user makes up (e.g., trying to unwrap a
candy). It also includes extraneous movements before and
after the user performs a task.

• tutorial (Quality 1–2). Movements associated with the
tutorial (e.g., touching the grippers to the table) are marked
as Q1 if there is any retrying behavior and Q2 if the motions
are smooth.

• <task> (Quality 1–3). Task-relevant motions for each of
our six tasks are labeled with the task name and a quality
from 1 to 3. Q3 is used to describe segments that complete
subtasks smoothly with no more than 2 retries. Q2 is used
to describe segments that use no more than 4 retries for
any one subtask, or that are completed but with slight
errors (e.g., grabbing more than 1 candy from a bin). Q1 is
used to describe segments that are task-relevant but of poor
quality (e.g., more than 4 retries for any one subtask), cause
changes to the scene (e.g., dropping a candy on the table),
or complete the task in a significantly different manner than
the expert demonstrations (e.g., using the opposite arm for
any subtask).
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Fig. 13: Screenshot of the pages in the interactive tutorial interface.

Fig. 14: Screenshot of a visual collision warning on the task page. An audial alarm
(beeping sound) is played on the tablet when the visual collision warning appears.

APPENDIX VI
ADDITIONAL DETAILS ON PILOT STUDIES AND SYSTEM

DEVELOPMENT

Prior to full system deployment, we conducted pilot studies on
a smaller population to help us iterate on our system. We obtained
the Institutional Review Board’s approval before both the pilot
studies and the full deployment. We recruited N=10 participants
to interact with the system. In order to mimic organic interactions
as closely as possible, we did not provide the participants with

Fig. 15: Screenshot of the data annotation interface. Annotators can scrub through
the episode and label segments with task and quality labels, which color codes a
bar to visualize the different tasks and qualities in the episode. When the annotator
is done labeling an episode, they can “commit” their labels and proceed to the
next episode.

any verbal instructions, other than to begin interacting with the
system as if they happened upon it organically. Our software
interface guided the participants through the consent form and
tutorial. Here is a sample of feedback provided by participants,
coupled with changes we made to the system.
• Degrees of Freedom: Users indicated that puppeteering demon-

strations was challenging the first time because they needed to
“understand the degrees of freedom” of the robot. To address
this feedback, we created a tutorial where the user was guided
through how to perform primitive movements of the leader
arms (e.g., controlling both puppet arms to touch the bottom of
the workspace) before they began interacting with the system.

• Tutorial Format: In an initial prototype, our tutorial was a



video that a user would watch before using the system. Users
provided feedback that they felt “impatient” and would rather
“explore what it is like to interface with the robot” rather than
“watch a long video.” To address this feedback, we made the
tutorial efficient and interactive: 4 steps that the user would
perform with the robot after watching them on the screen. The
interactive tutorial automatically advances after detecting that
each step is complete.

• Start and Stopping Demonstrations: In an initial prototype,
users begin demonstrations by (1) tapping a Start button on
an interface and (2) squeezing the grippers of the leader arms
closed. To terminate episodes, they would simply need to (1)
leave the arms to rest on the robot body and (2) tap a Stop
button on the interface. We received feedback that squeezing the
gripper to start episodes “made sense” but the “rest position at
the end was confusing.” To address this feedback, we designed
and 3D printed a mechanical stop for users to rest the arms. We
automatically terminate episodes when handles of the leader
arms make contact with this mechanical stop.

• Interface: In an initial prototype, users would access the
interface on their own smartphone by scanning a QR code
pasted on the platform. A user reported that they would prefer
if more of their interaction would happen “in the position
that they will be doing the task.” We therefore switched to
a tablet interface mounted at the base of the platform, which
was accessible when the user sat down to begin interacting with
the robot. On the interface itself, users reported that it was “easy
to understand.”

• Collisions: We observed that participants did not actively pay
much attention to collisions between the robots, as well as the
collision of wrist-camera mounts and objects mounted on the
table. To address this, we (1) added collision avoidance between
the arms and the table, (2) added an audio-visual alarm when
arms were near collision, and (3) mounted objects to the table
so that they would not move.

APPENDIX VII
OVERVIEW OF ACTION CHUNKING WITH TRANSFORMERS

(ACT)

In this section, we provide a more extended background
overview of imitation learning (IL) and the Action Chunking
with Transformers (ACT) algorithm [1].

Imitation learning (IL) aims to learn a policy πθ parame-
terized by θ given access to a dataset D composed of expert
demonstrations. Defined within the framework of a standard
partially observable Markov decision process (POMDP), each
trajectory ξ ∈D is a sequence of observation-action transitions
{(o0,a0), ... , (oT ,aT )}. Most commonly, IL is instantiated as
behavior cloning, which trains πθ to minimize the negative log-
likelihood of data, L(θ)=−E(o,a)∼D[logπθ (a|o)].

In practice, the human-collected demonstrations in D may
be diverse. To effectively learn from such diverse data, we can
condition the policy on a latent variable z, which helps to capture
the variability in the demonstrations by representing different
modes of behavior. Representing this policy as the decoder in
a conditional variational autoencoder (cVAE), we in addition
learn an encoder qφ from (observation, action) pairs to the latent

space: qφ(z | at,ot). And we condition our policy on the latent
variable: πθ (ât |ot,z). At test time, we sample latent vectors from
the standard normal distribution, z∼N (0,1). We regularize the
outputs of our encoder towards this distribution via a KL-penalty:
DKL(qφ(z |at,ot)∥N (0,1)). This method is formalized as Action
Chunking with Transformers (ACT) [1], an imitation learning
algorithm designed to learn from diverse human demonstrations.



Page Name Screenshot Page Name Screenshot

Sign In (Tap ID
Card)

Sign In (Create
User Profile)

Main Page Interactive Tutorial

1 2 3

4 5 6

Task Page Task Detail Page

Leaderboard Survey Page

Request Help Give Feedback

TABLE X: Screenshots of pages in the user interface.
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